3.9.61 \(\int \frac {1}{x^3 (-2+3 x^2) (-1+3 x^2)^{3/4}} \, dx\)

Optimal. Leaf size=191 \[ -\frac {\sqrt [4]{3 x^2-1}}{4 x^2}+\frac {15 \log \left (\sqrt {3 x^2-1}-\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )}{16 \sqrt {2}}-\frac {15 \log \left (\sqrt {3 x^2-1}+\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )}{16 \sqrt {2}}-\frac {3}{4} \tan ^{-1}\left (\sqrt [4]{3 x^2-1}\right )+\frac {15 \tan ^{-1}\left (1-\sqrt {2} \sqrt [4]{3 x^2-1}\right )}{8 \sqrt {2}}-\frac {15 \tan ^{-1}\left (\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )}{8 \sqrt {2}}-\frac {3}{4} \tanh ^{-1}\left (\sqrt [4]{3 x^2-1}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 191, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 13, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.542, Rules used = {446, 103, 156, 63, 211, 1165, 628, 1162, 617, 204, 212, 206, 203} \begin {gather*} -\frac {\sqrt [4]{3 x^2-1}}{4 x^2}+\frac {15 \log \left (\sqrt {3 x^2-1}-\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )}{16 \sqrt {2}}-\frac {15 \log \left (\sqrt {3 x^2-1}+\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )}{16 \sqrt {2}}-\frac {3}{4} \tan ^{-1}\left (\sqrt [4]{3 x^2-1}\right )+\frac {15 \tan ^{-1}\left (1-\sqrt {2} \sqrt [4]{3 x^2-1}\right )}{8 \sqrt {2}}-\frac {15 \tan ^{-1}\left (\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )}{8 \sqrt {2}}-\frac {3}{4} \tanh ^{-1}\left (\sqrt [4]{3 x^2-1}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

-(-1 + 3*x^2)^(1/4)/(4*x^2) - (3*ArcTan[(-1 + 3*x^2)^(1/4)])/4 + (15*ArcTan[1 - Sqrt[2]*(-1 + 3*x^2)^(1/4)])/(
8*Sqrt[2]) - (15*ArcTan[1 + Sqrt[2]*(-1 + 3*x^2)^(1/4)])/(8*Sqrt[2]) - (3*ArcTanh[(-1 + 3*x^2)^(1/4)])/4 + (15
*Log[1 - Sqrt[2]*(-1 + 3*x^2)^(1/4) + Sqrt[-1 + 3*x^2]])/(16*Sqrt[2]) - (15*Log[1 + Sqrt[2]*(-1 + 3*x^2)^(1/4)
 + Sqrt[-1 + 3*x^2]])/(16*Sqrt[2])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \left (-2+3 x^2\right ) \left (-1+3 x^2\right )^{3/4}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x^2 (-2+3 x) (-1+3 x)^{3/4}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt [4]{-1+3 x^2}}{4 x^2}-\frac {1}{4} \operatorname {Subst}\left (\int \frac {-\frac {15}{2}+\frac {27 x}{4}}{x (-2+3 x) (-1+3 x)^{3/4}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt [4]{-1+3 x^2}}{4 x^2}-\frac {15}{16} \operatorname {Subst}\left (\int \frac {1}{x (-1+3 x)^{3/4}} \, dx,x,x^2\right )+\frac {9}{8} \operatorname {Subst}\left (\int \frac {1}{(-2+3 x) (-1+3 x)^{3/4}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt [4]{-1+3 x^2}}{4 x^2}-\frac {5}{4} \operatorname {Subst}\left (\int \frac {1}{\frac {1}{3}+\frac {x^4}{3}} \, dx,x,\sqrt [4]{-1+3 x^2}\right )+\frac {3}{2} \operatorname {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\sqrt [4]{-1+3 x^2}\right )\\ &=-\frac {\sqrt [4]{-1+3 x^2}}{4 x^2}-\frac {5}{8} \operatorname {Subst}\left (\int \frac {1-x^2}{\frac {1}{3}+\frac {x^4}{3}} \, dx,x,\sqrt [4]{-1+3 x^2}\right )-\frac {5}{8} \operatorname {Subst}\left (\int \frac {1+x^2}{\frac {1}{3}+\frac {x^4}{3}} \, dx,x,\sqrt [4]{-1+3 x^2}\right )-\frac {3}{4} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt [4]{-1+3 x^2}\right )-\frac {3}{4} \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt [4]{-1+3 x^2}\right )\\ &=-\frac {\sqrt [4]{-1+3 x^2}}{4 x^2}-\frac {3}{4} \tan ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )-\frac {3}{4} \tanh ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )-\frac {15}{16} \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt [4]{-1+3 x^2}\right )-\frac {15}{16} \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt [4]{-1+3 x^2}\right )+\frac {15 \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt [4]{-1+3 x^2}\right )}{16 \sqrt {2}}+\frac {15 \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt [4]{-1+3 x^2}\right )}{16 \sqrt {2}}\\ &=-\frac {\sqrt [4]{-1+3 x^2}}{4 x^2}-\frac {3}{4} \tan ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )-\frac {3}{4} \tanh ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )+\frac {15 \log \left (1-\sqrt {2} \sqrt [4]{-1+3 x^2}+\sqrt {-1+3 x^2}\right )}{16 \sqrt {2}}-\frac {15 \log \left (1+\sqrt {2} \sqrt [4]{-1+3 x^2}+\sqrt {-1+3 x^2}\right )}{16 \sqrt {2}}-\frac {15 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt [4]{-1+3 x^2}\right )}{8 \sqrt {2}}+\frac {15 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt [4]{-1+3 x^2}\right )}{8 \sqrt {2}}\\ &=-\frac {\sqrt [4]{-1+3 x^2}}{4 x^2}-\frac {3}{4} \tan ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )+\frac {15 \tan ^{-1}\left (1-\sqrt {2} \sqrt [4]{-1+3 x^2}\right )}{8 \sqrt {2}}-\frac {15 \tan ^{-1}\left (1+\sqrt {2} \sqrt [4]{-1+3 x^2}\right )}{8 \sqrt {2}}-\frac {3}{4} \tanh ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )+\frac {15 \log \left (1-\sqrt {2} \sqrt [4]{-1+3 x^2}+\sqrt {-1+3 x^2}\right )}{16 \sqrt {2}}-\frac {15 \log \left (1+\sqrt {2} \sqrt [4]{-1+3 x^2}+\sqrt {-1+3 x^2}\right )}{16 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 181, normalized size = 0.95 \begin {gather*} \frac {1}{32} \left (-\frac {8 \sqrt [4]{3 x^2-1}}{x^2}+15 \sqrt {2} \log \left (\sqrt {3 x^2-1}-\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )-15 \sqrt {2} \log \left (\sqrt {3 x^2-1}+\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )-24 \tan ^{-1}\left (\sqrt [4]{3 x^2-1}\right )+30 \sqrt {2} \tan ^{-1}\left (1-\sqrt {2} \sqrt [4]{3 x^2-1}\right )-30 \sqrt {2} \tan ^{-1}\left (\sqrt {2} \sqrt [4]{3 x^2-1}+1\right )-24 \tanh ^{-1}\left (\sqrt [4]{3 x^2-1}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

((-8*(-1 + 3*x^2)^(1/4))/x^2 - 24*ArcTan[(-1 + 3*x^2)^(1/4)] + 30*Sqrt[2]*ArcTan[1 - Sqrt[2]*(-1 + 3*x^2)^(1/4
)] - 30*Sqrt[2]*ArcTan[1 + Sqrt[2]*(-1 + 3*x^2)^(1/4)] - 24*ArcTanh[(-1 + 3*x^2)^(1/4)] + 15*Sqrt[2]*Log[1 - S
qrt[2]*(-1 + 3*x^2)^(1/4) + Sqrt[-1 + 3*x^2]] - 15*Sqrt[2]*Log[1 + Sqrt[2]*(-1 + 3*x^2)^(1/4) + Sqrt[-1 + 3*x^
2]])/32

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.24, size = 140, normalized size = 0.73 \begin {gather*} -\frac {\sqrt [4]{3 x^2-1}}{4 x^2}-\frac {3}{4} \tan ^{-1}\left (\sqrt [4]{3 x^2-1}\right )-\frac {15 \tan ^{-1}\left (\frac {\frac {\sqrt {3 x^2-1}}{\sqrt {2}}-\frac {1}{\sqrt {2}}}{\sqrt [4]{3 x^2-1}}\right )}{8 \sqrt {2}}-\frac {3}{4} \tanh ^{-1}\left (\sqrt [4]{3 x^2-1}\right )-\frac {15 \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{3 x^2-1}}{\sqrt {3 x^2-1}+1}\right )}{8 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^3*(-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

-1/4*(-1 + 3*x^2)^(1/4)/x^2 - (3*ArcTan[(-1 + 3*x^2)^(1/4)])/4 - (15*ArcTan[(-(1/Sqrt[2]) + Sqrt[-1 + 3*x^2]/S
qrt[2])/(-1 + 3*x^2)^(1/4)])/(8*Sqrt[2]) - (3*ArcTanh[(-1 + 3*x^2)^(1/4)])/4 - (15*ArcTanh[(Sqrt[2]*(-1 + 3*x^
2)^(1/4))/(1 + Sqrt[-1 + 3*x^2])])/(8*Sqrt[2])

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 252, normalized size = 1.32 \begin {gather*} \frac {60 \, \sqrt {2} x^{2} \arctan \left (\sqrt {2} \sqrt {\sqrt {2} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + \sqrt {3 \, x^{2} - 1} + 1} - \sqrt {2} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - 1\right ) + 60 \, \sqrt {2} x^{2} \arctan \left (\frac {1}{2} \, \sqrt {2} \sqrt {-4 \, \sqrt {2} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 4 \, \sqrt {3 \, x^{2} - 1} + 4} - \sqrt {2} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 1\right ) - 15 \, \sqrt {2} x^{2} \log \left (4 \, \sqrt {2} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 4 \, \sqrt {3 \, x^{2} - 1} + 4\right ) + 15 \, \sqrt {2} x^{2} \log \left (-4 \, \sqrt {2} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 4 \, \sqrt {3 \, x^{2} - 1} + 4\right ) - 24 \, x^{2} \arctan \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}\right ) - 12 \, x^{2} \log \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 1\right ) + 12 \, x^{2} \log \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - 1\right ) - 8 \, {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}}{32 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="fricas")

[Out]

1/32*(60*sqrt(2)*x^2*arctan(sqrt(2)*sqrt(sqrt(2)*(3*x^2 - 1)^(1/4) + sqrt(3*x^2 - 1) + 1) - sqrt(2)*(3*x^2 - 1
)^(1/4) - 1) + 60*sqrt(2)*x^2*arctan(1/2*sqrt(2)*sqrt(-4*sqrt(2)*(3*x^2 - 1)^(1/4) + 4*sqrt(3*x^2 - 1) + 4) -
sqrt(2)*(3*x^2 - 1)^(1/4) + 1) - 15*sqrt(2)*x^2*log(4*sqrt(2)*(3*x^2 - 1)^(1/4) + 4*sqrt(3*x^2 - 1) + 4) + 15*
sqrt(2)*x^2*log(-4*sqrt(2)*(3*x^2 - 1)^(1/4) + 4*sqrt(3*x^2 - 1) + 4) - 24*x^2*arctan((3*x^2 - 1)^(1/4)) - 12*
x^2*log((3*x^2 - 1)^(1/4) + 1) + 12*x^2*log((3*x^2 - 1)^(1/4) - 1) - 8*(3*x^2 - 1)^(1/4))/x^2

________________________________________________________________________________________

giac [A]  time = 0.50, size = 169, normalized size = 0.88 \begin {gather*} -\frac {15}{16} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}\right )}\right ) - \frac {15}{16} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}\right )}\right ) - \frac {15}{32} \, \sqrt {2} \log \left (\sqrt {2} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + \sqrt {3 \, x^{2} - 1} + 1\right ) + \frac {15}{32} \, \sqrt {2} \log \left (-\sqrt {2} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + \sqrt {3 \, x^{2} - 1} + 1\right ) - \frac {{\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}}{4 \, x^{2}} - \frac {3}{4} \, \arctan \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}\right ) - \frac {3}{8} \, \log \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 1\right ) + \frac {3}{8} \, \log \left ({\left | {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="giac")

[Out]

-15/16*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*(3*x^2 - 1)^(1/4))) - 15/16*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2
) - 2*(3*x^2 - 1)^(1/4))) - 15/32*sqrt(2)*log(sqrt(2)*(3*x^2 - 1)^(1/4) + sqrt(3*x^2 - 1) + 1) + 15/32*sqrt(2)
*log(-sqrt(2)*(3*x^2 - 1)^(1/4) + sqrt(3*x^2 - 1) + 1) - 1/4*(3*x^2 - 1)^(1/4)/x^2 - 3/4*arctan((3*x^2 - 1)^(1
/4)) - 3/8*log((3*x^2 - 1)^(1/4) + 1) + 3/8*log(abs((3*x^2 - 1)^(1/4) - 1))

________________________________________________________________________________________

maple [C]  time = 5.96, size = 916, normalized size = 4.80

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(3*x^2-2)/(3*x^2-1)^(3/4),x)

[Out]

-1/4*(3*x^2-1)^(1/4)/x^2+(15/16*RootOf(_Z^4+1)^3*ln((27*x^6*RootOf(_Z^4+1)^3-36*RootOf(_Z^4+1)^3*x^4+18*RootOf
(_Z^4+1)^2*(27*x^6-27*x^4+9*x^2-1)^(1/4)*x^4+15*RootOf(_Z^4+1)^3*x^2-12*RootOf(_Z^4+1)^2*(27*x^6-27*x^4+9*x^2-
1)^(1/4)*x^2+6*RootOf(_Z^4+1)*(27*x^6-27*x^4+9*x^2-1)^(1/2)*x^2-2*RootOf(_Z^4+1)^3+2*RootOf(_Z^4+1)^2*(27*x^6-
27*x^4+9*x^2-1)^(1/4)-2*(27*x^6-27*x^4+9*x^2-1)^(1/2)*RootOf(_Z^4+1)+2*(27*x^6-27*x^4+9*x^2-1)^(3/4))/x^2/(3*x
^2-1)^2)+15/16*RootOf(_Z^4+1)*ln((6*RootOf(_Z^4+1)^3*(27*x^6-27*x^4+9*x^2-1)^(1/2)*x^2-18*RootOf(_Z^4+1)^2*(27
*x^6-27*x^4+9*x^2-1)^(1/4)*x^4+27*x^6*RootOf(_Z^4+1)-2*(27*x^6-27*x^4+9*x^2-1)^(1/2)*RootOf(_Z^4+1)^3+12*RootO
f(_Z^4+1)^2*(27*x^6-27*x^4+9*x^2-1)^(1/4)*x^2-36*RootOf(_Z^4+1)*x^4-2*RootOf(_Z^4+1)^2*(27*x^6-27*x^4+9*x^2-1)
^(1/4)+15*RootOf(_Z^4+1)*x^2+2*(27*x^6-27*x^4+9*x^2-1)^(3/4)-2*RootOf(_Z^4+1))/x^2/(3*x^2-1)^2)+3/8*ln((-27*x^
6+18*(27*x^6-27*x^4+9*x^2-1)^(1/4)*x^4+18*x^4-6*(27*x^6-27*x^4+9*x^2-1)^(1/2)*x^2-12*(27*x^6-27*x^4+9*x^2-1)^(
1/4)*x^2-3*x^2+2*(27*x^6-27*x^4+9*x^2-1)^(3/4)+2*(27*x^6-27*x^4+9*x^2-1)^(1/2)+2*(27*x^6-27*x^4+9*x^2-1)^(1/4)
)/(3*x^2-2)/(3*x^2-1)^2)+3/8*RootOf(_Z^4+1)^2*ln((-27*RootOf(_Z^4+1)^2*x^6+6*RootOf(_Z^4+1)^2*(27*x^6-27*x^4+9
*x^2-1)^(1/2)*x^2+18*RootOf(_Z^4+1)^2*x^4-18*(27*x^6-27*x^4+9*x^2-1)^(1/4)*x^4-2*RootOf(_Z^4+1)^2*(27*x^6-27*x
^4+9*x^2-1)^(1/2)-3*RootOf(_Z^4+1)^2*x^2+2*(27*x^6-27*x^4+9*x^2-1)^(3/4)+12*(27*x^6-27*x^4+9*x^2-1)^(1/4)*x^2-
2*(27*x^6-27*x^4+9*x^2-1)^(1/4))/(3*x^2-1)^2/(3*x^2-2)))/(3*x^2-1)^(3/4)*((3*x^2-1)^3)^(1/4)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (3 \, x^{2} - 1\right )}^{\frac {3}{4}} {\left (3 \, x^{2} - 2\right )} x^{3}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="maxima")

[Out]

integrate(1/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)*x^3), x)

________________________________________________________________________________________

mupad [B]  time = 0.21, size = 81, normalized size = 0.42 \begin {gather*} -\frac {3\,\mathrm {atan}\left ({\left (3\,x^2-1\right )}^{1/4}\right )}{4}+\frac {\mathrm {atan}\left ({\left (3\,x^2-1\right )}^{1/4}\,1{}\mathrm {i}\right )\,3{}\mathrm {i}}{4}-\frac {{\left (3\,x^2-1\right )}^{1/4}}{4\,x^2}+\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,{\left (3\,x^2-1\right )}^{1/4}\right )\,15{}\mathrm {i}}{8}-\frac {{\left (-1\right )}^{3/4}\,\mathrm {atan}\left ({\left (-1\right )}^{3/4}\,{\left (3\,x^2-1\right )}^{1/4}\right )\,15{}\mathrm {i}}{8} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(3*x^2 - 1)^(3/4)*(3*x^2 - 2)),x)

[Out]

(atan((3*x^2 - 1)^(1/4)*1i)*3i)/4 - (3*atan((3*x^2 - 1)^(1/4)))/4 - (3*x^2 - 1)^(1/4)/(4*x^2) + ((-1)^(1/4)*at
an((-1)^(1/4)*(3*x^2 - 1)^(1/4))*15i)/8 - ((-1)^(3/4)*atan((-1)^(3/4)*(3*x^2 - 1)^(1/4))*15i)/8

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{3} \left (3 x^{2} - 2\right ) \left (3 x^{2} - 1\right )^{\frac {3}{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(3*x**2-2)/(3*x**2-1)**(3/4),x)

[Out]

Integral(1/(x**3*(3*x**2 - 2)*(3*x**2 - 1)**(3/4)), x)

________________________________________________________________________________________